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Abstract

In this article we discuss efforts to design and
empirically test measures of teachers’ content
knowledge for teaching elementary mathemat-
ics. We begin by reviewing the literature on
teacher knowledge, noting how scholars have
organized such knowledge. Next we describe
survey items we wrote to represent knowledge
for teaching mathematics and results from factor
analysis and scaling work with these items. We
found that teachers’ knowledge for teaching el-
ementary mathematics was multidimensional
and included knowledge of various mathemati-
cal topics (e.g., number and operations, algebra)
and domains (e.g., knowledge of content, knowl-
edge of students and content). The constructs in-
dicated by factor analysis formed psychometri-
cally acceptable scales.

In the past 2 decades teachers’ knowledge
of mathematics has become an object of con-
cern. New theoretical and empirical in-
sights into the work of teaching (e.g., Shul-
man, 1986, 1987; Wilson, Shulman, &
Richert, 1987) have spurred greater atten-
tion to the role such knowledge plays in
teacher education and in the quality of
teaching itself (e.g., National Commission
on Teaching and America’s Future, 1996).
Other studies have documented the mean
and variation in teachers’ knowledge of
mathematics for teaching (e.g., Ball, 1990;
Ma, 1999). Results of these efforts have been
reflected in teaching standards published
by Interstate New Teacher Assessment and
Support Consortium (INTASC), the Na-
tional Board for Professional Teaching
Standards, as well as by many other states,
localities, and professional teaching orga-
nizations (e.g., the National Council of
Teachers of Mathematics). Concerns that
teachers possess necessary knowledge and
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skills for teaching mathematics have also
led to the development and use of teacher
licensing exams, such as PRAXIS, an assess-
ment developed by the Educational Testing
Service and now administered in 38 states.
Other states and testing firms have devel-
oped and administer similar assessments.

Given the development of such stan-
dards and assessments, one might conjec-
ture that there is substantial agreement
about the knowledge needed for teaching
children mathematics. However, a closer
look at released items from the elementary
mathematics portion of these teacher licen-
sure exams suggests lack of agreement over
what teachers need to know. Some exams
assess individuals’ ability to solve middle-
school-level mathematics problems (e.g.,
California Basic Educational Skills Test),
others the ability to construct mathematical
questions and tasks for students (e.g., Exam
for the Certification of Educators in Texas),
and still others the ability to understand
and apply mathematics content to teaching
(e.g., Massachusetts Tests for Educator Li-
censure). This implicit disagreement over
the knowledge of mathematics that teach-
ers need can be traced through the theo-
retical and empirical literature on teaching
knowledge, where different authors have
proposed divergent elements and organi-
zations for such knowledge. The disagree-
ment is reflected in current debates about
the mathematics teachers need to know in
order to teach. Some argue, for instance,
that a teacher’s capability in general math-
ematics is the most important qualification
(U.S. Department of Education, 2002). Oth-
ers believe that general mathematical ability
must be complemented by additional pro-
fessional knowledge, for example, of stu-
dent thinking about content, or of mathe-
matical tasks specific to the work of
teaching. To date, however, few empirical
data have been publicly available to help
judge the validity of either claim.

We sought to shed light on this debate
by analyzing data collected in the service of
constructing an assessment of teachers’ con-
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tent knowledge for teaching mathematics.
To develop this assessment, we used ele-
ments from existing theories about teacher
knowledge (e.g., Ball & Bass, 2003; Gross-
man, 1990; Shulman, 1987, Wilson et al.,
1987) to write a set of survey-based teaching
problems thought to represent components
of the knowledge of mathematics needed
for teaching. We then factor analyzed teach-
ers’ responses to this item set to determine
the structure of the knowledge we tried to
represent. The principal question guiding
our work was: Is there one construct that
can be called “mathematics knowledge for
teaching” and that explains patterns of
teachers’ responses, or do these items rep-
resent multiple constructs and thus several
distinct mathematical competencies of ele-
mentary mathematics teachers? A second
question was: Given the structure of teach-
ers’ mathematical knowledge for teaching,
can we construct scales that measure such
knowledge reliably?

In this article we describe this effort and
its results. We begin with an overview of the
original literature about content knowledge
for teaching. Next we discuss our own ef-
forts to write items that represented such
knowledge, with an emphasis on the poten-
tial constructs that might emerge from the
items. Finally, we describe initial results
from a field test of these items, including
factor analyses and attempts to scale the
items for use in statistical work.

Literature Review

In the mid-1980s Lee Shulman and his col-
leagues introduced the notion of “pedagog-
ical content knowledge” to refer to the spe-
cial nature of the subject-matter knowledge
required for teaching (Shulman, 1986, 1987;
Wilson et al., 1987). Conceived as comple-
mentary to general pedagogical knowledge
and general knowledge of subject matter,
the concept of pedagogical content knowl-
edge was thought to include familiarity
with topics children find interesting or dif-
ficult, the representations most useful for
teaching an idea, and learners’ typical er-
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rors and misconceptions. Labeling this as
pedagogical content knowledge not only
underscored the importance of understand-
ing subject matter in teaching but also sug-
gested that personal knowledge of the sub-
ject—that is, what an educated adult would
know of a subject—was insufficient for
teaching that subject. This distinction rep-
resented an important contribution to solv-
ing the puzzle about qualities and resources
needed for effective teaching.

Research on pedagogical content knowl-
edge has conceived of such knowledge as
particular, rooted in the details of school
subject matter and of what is involved in
helping others understand it. Working in
depth in different subjects, scholars probed
the nature of the content knowledge en-
tailed by teaching; comparisons across
fields were also generative. Grossman
(1990), for example, articulated how teach-
ers’ orientations to literature shaped the
ways in which they approached particular
texts with their students. And Wilson and
Wineburg (1988) illuminated how social
studies teachers’ disciplinary backgrounds
affected the ways in which they represented
historical knowledge for high school stu-
dents. In mathematics, scholars showed
that what teachers would need to under-
stand about fractions, place value, or slope,
for instance, would be substantially differ-
ent from what would suffice for other
adults (Ball, 1988, 1990, 1991; Borko et al.,
1992; Leinhardt & Smith, 1985).

' Despite this wealth of research, we ar-
gue that the mathematical content teachers
must know in order to teach has yet to be
mapped precisely. Most foundational work
in mathematics has relied principally on
single-teacher case studies, expert-novice
comparisons, cross-national comparisons,
and studies of new teachers. Although such
methods have been critical in beginning to
articulate the content of subject-matter
knowledge for teaching mathematics, these
methods lack the power to propose and test
hypotheses regarding the organization,
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composition, and characteristics of content
knowledge for teaching.

Researchers have, however, conjectured
about the organization of such knowledge,
and these conjectures proved useful starting
points for this investigation. Shulman
(1986) originally proposed three categories
of subject-matter knowledge for teaching.
His first category, content knowledge, “re-
fers to the amount and organization of
knowledge per se in the mind of teachers”
(p.- 9). Content knowledge, according to
Shulman, included both facts and concepts
in a domain but also why facts and concepts
are true and how knowledge is generated
and structured in the discipline (Bruner,
1960; Schwab, 1961 /1978). The second cate-
gory Shulman and his colleagues (Shulman,
1986; Wilson et al., 1987) advanced, peda-
gogical content knowledge, “goes beyond
knowledge of subject matter per se to the
dimension of subject matter knowledge for
teaching” (p. 9). This category has become
of central interest to researchers and teacher
educators alike. Included here are represen-
tations of content ideas as well as an un-
derstanding of what makes learning a topic
difficult or easy for students. Shulman’s
third category of subject-matter knowledge
for teaching, curriculum knowledge, in-
volves awareness of how topics are ar-
ranged both within a school year and over
longer periods of time and ways of using
curriculum resources, such as textbooks, to
organize a program of study for students.

Shulman’s theory of teacher knowledge
listed also general pedagogical knowledge
(classroom management techniques and
strategies), knowledge of learners and their
characteristics, knowledge of educational
contexts (e.g., school board politics, com-
munities), and knowledge of educational .
ends, purposes, and values.

Leinhardt and Smith (1985) proposed a
different organization of teacher knowledge
in their study of expert-novice differences
in mathematics teaching. Working from a
psychological/cognitive perspective, they
identified two aspects of knowledge for
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teaching: lesson structure knowledge—
which includes planning and running a les-
son smoothly and providing clear explana-
. tions—and subject-matter knowledge. They
included in the latter “concepts, algorithmic
operations, the connections among different
algorithmic procedures, the subset of the
number systems being drawn upon, the un-
derstanding of classes of student errors, and
curriculum presentation” (p. 247).

Other ways of dividing the terrain have
been advanced as well. Grossman (1990) re-
organized Shulman and colleagues’ cate-
gories into four and extended them slightly:
subject-matter knowledge, general peda-
gogical knowledge, pedagogical content
knowledge (knowledge of students’ under-
standing, curriculum, and instructional
strategies), and knowledge of context. Ball
(1990) described differences between teach-
ers’ ability to execute an operation (division
by a fraction) and their ability to represent
that operation accurately for students,
clearly demarcating two dimensions in
teachers’ content knowledge—the ability to
calculate a division involving fractions, and
the kind of understanding of that operation
needed for teaching. And, based on analy-
ses of classroom lessons, Ball proposed a
distinction between knowledge of mathe-
matics and knowledge about mathematics,
corresponding roughly to knowledge of
concepts, ideas, and procedures and how
they work, on one hand, and knowledge
about “doing mathematics” —for example,
how one decides that a claim is true, a so-
lution complete, or a representation accu-
rate—on the other hand. In more recent
work, Ma (1999) used comparisons of U.S.
and Chinese elementary teachers to de-
scribe “profound understanding of funda-
mental mathematics” as instantiated in the
connectedness, multiple perspectives, basic
(fundamental) ideas, and longitudinal co-
herence that occurred during their teaching.

By posing these potential categories of
content knowledge for teaching, researchers
have contributed to the development of the-
ory about this knowledge. One contribution
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has been to refocus researchers’ attention on
the centrality of subject matter and subject-
matter knowledge in teaching. A second
was to draw attention back to disciplines
and their structures as a basis for theorizing
about what teachers should know. A third
has been to focus attention on what expert
teachers know about content and how they
use or report using this knowledge of sub-
ject matter in their teaching.

Although the theoretical work on teach-
ers’ knowledge for teaching has contributed
to the field, much remains to be done. For
example, there is still much to be under-
stood about the organization and structure
of subject-matter knowledge in different
disciplines and what these structures sug-
gest for teaching. Little is known yet about
whether and how content knowledge for
teaching relates to the content knowledge of
other professionals or of ordinary educated
adults. And to date, scholars have not at-
tempted to measure teachers’ knowledge
for teaching in a rigorous manner and thus
cannot track its development or contribu-
tion to student achievement.

Method

To learn more about these issues, we began
in 2001 to write, and later pilot test, numer-
ous multiple-choice items intended to rep-
resent the mathematical knowledge used
in teaching elementary mathematics. We
wrote items in categories that were modi-
fied versions of those proposed by Shul-
man, Wilson, Ball, and others. The uneven
research base across domains was notice-
able, leading us to mark off the territory in
slightly different ways. For instance, al-
though we found substantial research on
student errors and strategies in mathemat-
ics, we uncovered less about what represen-
tations work best for particular mathemat-
ical topics. Such insight would be needed to
write items that would tap knowledge of
“representations most useful for teaching
specific content” (Shulman, 1986). Without
these items and this category, faithfully rep-
resenting pedagogical content knowledge
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as conceived in the theoretical literature
was not possible. The more extensive re-
search base about student learning of math-
ematics led us to craft a separate category
on this topic. We explain our categories in
more detail below.

Item writing served several purposes: at
the most practical level, we hoped to de-
velop measures by which we could gauge
growth in teachers” content knowledge for
teaching and learn more about how such
knowledge contributes to student achieve-
ment. Item writing was also another way to
explore the nature and composition of
subject-matter knowledge for teaching.
During the process of examining curricu-
lum materials and student work, writing
and refining items, and thinking about what
items represented, we sharpened and de-
fined our ideas about the mathematical
knowledge and skill needed for teaching
mathematics. Finally, pilot testing these
items allowed us to use factor analyses and
scaling techniques to learn about the orga-
nization and characteristics of mathematical
knowledge for teaching. Before describing
the results of our analyses and efforts to
build scales, we recount the process by
which we developed survey items and de-
scribe the possible ways these items might
be categorized. ’

Developing Survey Items

Our approach to studying content
knowledge for teaching was grounded in a
theory of instruction, taking as a starting
point the work of enacting high-quality in-
struction (Ball & Bass, 2000; Ball & Cohen,
1999; Cohen & Ball, 1999). From that per-
spective, we asked, What mathematical
knowledge is needed to help students learn
mathematics? Our interest was in identify-
ing what and how subject-matter knowl-
edge is required for teaching. Using this
theoretical perspective as well as the re-
search base on teaching and learning math-
ematics, analyses of curriculum materials,
examples of student work, and personal ex-
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perience, researchers at the Study of In-
structional Improvement developed 138
mathematics items in the spring of 2001 in
the categories shown in Figure 1. Two con-
tent areas—number concepts and opera-
tions—were selected because they com-
prise a significant portion of the K-6
curriculum and because important and use-
ful work existed on the teaching and learn-
ing of these topics. Patterns, functions, and
algebra was chosen because it represents a
newer strand of the K-6 curriculum and
thus allows insight into what and how
teachers know about this topic now and
perhaps how knowledge increases over
time as better curriculum and professional
development become available and as
teachers gain experience teaching this topic.
Initial item-writing efforts also focused on
two kinds of teacher knowledge: knowl-
edge of content itself and combined knowl-
edge of students and content. By demarcat-
ing the domains in this way, writers
intended to reflect elements contained in
Shulman and others’ typologies of content
knowledge for teaching. Crossing the three
content areas with the two domains of
teacher knowledge yielded six cells. How-
ever, the lack of research on students’ learn-
ing of patterns, functions, and algebra in
2001 led us to conclude that we could not
develop items in this cell during these initial
item-writing efforts (see Fig. 1). Since then,
more research in this area has become avail-
able (e.g., Carpenter, Franke, & Levi, 2003)
and item writing is planned.

The constructs, or underlying organiz-
ing principles, indicated by factor analyses
with these items might reflect the five exist-
ing domains exactly. Yet a post-hoc analysis
of the items revealed other potential hy-
potheses about the organizational structure.
To start, one construct may explain the pat-
terns in teachers’ responses to. items in all
five cells. If this were so, we might conjec-
ture that this single construct could be de-
scribed as “general mathematical ability”
and conclude that there is little need to
identify specialized knowledge for teach-
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Domain

Knowledge of
Knowledge of students and
content content

Content area

Number concepts
Operations
Patterns, functions,

algebra

F1G. 1.—Mathematics content areas and domains.
Shaded area represents construct for which no items
were developed.

ing, or that this specialized knowledge is so
strongly related to the knowledge other
educated adults hold as to be functionally
equivalent, at least for measurement pur-
poses. At the other end of the spectrum,
however, we might find that items are dif-
ferentiated in more detail than in Figure 1.
For instance, teachers’ knowledge might be
differentiated at the level of particular top-
ics in the elementary curriculum, for ex-
ample, whole numbers, fractions, decimals,
operations (e.g., addition) with whole num-
bers, and so on. If this were the case, we
might conjecture that teachers have highly
particularized knowledge of the material
they teach, and we would study these
knowledge clusters in more depth.
Mathematical content areas are not the
only potential means of organizing items.
These items were situated in yet another
possible categorization system, what we
would call tasks of teaching. This way of
categorizing items is based on the idea that
teachers’ mathematical knowledge is used
in the course of different sorts of tasks—
choosing representations, explaining, inter-
preting student responses, assessing stu-
dent understanding, analyzing student
difficulties, evaluating the correctness and
adequacy of curriculum materials. These
are tasks teachers might face in teaching
any subject, and they provide another po-
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tential way to organize teachers’ content
knowledge for teaching mathematics.
Finally, items may differentiate them-
selves within the cells shown in Figure 1.
For instance, some items appear to require
respondents to draw on common knowl-
edge of content (CKQ), for instance, items
that ask teachers to find the decimal half-
way between 1.1 and 1.11 or to find the
eighty-third shape in a sequence. As Shul-
man and others have pointed out, such
mathematics knowledge is used in the
course of teaching because teachers must
compute, make correct mathematical state-
ments, and solve problems. Other items,
however, appear to be based on the ways
mathematics arises in elementary class-
rooms, or on what we call specialized
knowledge of content (SKC), including
building or examining alternative represen-
tations, providing explanations, and evalu-
ating unconventional student methods.
One way to illustrate this distinction is by
imagining how someone who has not
taught children but who is otherwise
knowledgeable in mathematics might inter-
pret and respond to these items. This test
population would not find the items that
tap ordinary subject-matter knowledge dif-
ficult. By contrast, however, these mathe-
matics experts might be surprised, slowed,
or even halted by the mathematics-as-used-
in-teaching items; they would not have had
access to or experience with opportunities
to see, learn about, and understand mathe-
matics as it is used at the elementary level.
Two of the four mathematics items in the
Appendix illustrate this distinction. In the
first item, about powers of ten, teachers
must draw on their knowledge of proper-
ties of numbers—in this case, place value as
represented within exponential notation—
to answer the problem. This content knowl-
edge is used in teaching; students learn
about exponential notation in the middle to
late elementary grades, and thus teachers
must have adequate knowledge to develop
this topic. However, many adults, and cer-
fainly all mathematicians, would know
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enough to answer this item correctly. The
next item illustrates a special kind of con-
tent knowledge, one that arises through
teaching content to young children. In the
second item, teachers must inspect three so-
lutions to the same two-digit multiplication
problem (35 X 25) and assess whether ap-
proaches used for each solution would
generalize to all whole-number multipli-
cation. To respond in such situations,
teachers must draw on their mathematics
knowledge—inspecting the solution to un-
derstand what was done at each step, then
gauging whether the method makes sense
and would work in all cases. Analyzing
procedures and justifying their validity is a
mathematical process. However, doing it in
this way and in this context (i.e., appraising
student solutions to a computation prob-
lem) is a task that arises regularly in teach-
ing and not necessarily in other arenas.
Hence, it is a type of and context for math-
ematical reasoning in which teachers must
engage, and it appears to draw on a spe-
cialized type of mathematical knowledge,
one that makes it possible to analyze and
make sense of a range of methods and ap-
proaches to a computation.

The KSC category also contained subtle
distinctions. As we (and mathematicians as-
sociated with this project) reviewed items,
we saw that some such items required
knowledge of students and their ways of
thinking about mathematics—typical er-
rors, reasons for those errors, developmen-
tal sequences, strategies for solving prob-
lems. Teachers may need to know, for
instance, what errors students make as they
learn about the place value system, or strat-
egies students might use to remember the
answer to 8 X 9. In other cases, knowledge
of students and content items might draw
on student thinking and/or mathematics
content knowledge. For instance, teachers
may use both types of knowledge to inter-
pret student statements about the commu-
tative property, analyzing what students
have said about this topic to assess under-
standing and depth of knowledge.
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The third and fourth problems in the
Appendix illustrate distinctions within our
KSC category. The third item asks teachers
to consider which of three lists of decimal
numbers would be best to assign to discrim-
inate students’ understanding of and skill
in ordering decimals, or whether the three
lists would be equally useful for this pur-
pose. Two of the three lists would allow stu-
dents to respond correctly without paying
any attention to the decimal point. In inter-
views, many people who have never taught
this topic, including mathematicians, report
seeing no difference among the three lists;
teachers with knowledge of decimals for
teaching are more likely to see the differ-
ences immediately. Thus, knowledge of stu-
dents and of the typical mistakes they make
in ordering decimals is necessary to answer
this problem correctly. The next item, on
buggy algorithms, requires either knowl-
edge of typical student mistakes or the abil-
ity to perform a detailed mathematical anal-
ysis to arrive at a correct answer.

Data Collection and Analysis

Items in each cell of Figure 1 were as-
signed roughly equally to one of three
forms (A, B, or C), thus balancing forms
across both content and domains. Forms
were also balanced in terms of projected
item difficulties. These forms were pilot
tested in California’s Mathematics Profes-
sional Development Institutes (MPDIs).
These institutes were publicly funded,
large-scale efforts to boost California teach-
ers’ knowledge of subject matter in mathe-
matics. The institutes had over 40 sites, cost
about $65 million, and served 23,000 K-12
teachers in the first 3 years of the program.
Pilot testing took place only with elemen-
tary teachers enrolled in number and opera-
tions institutes. At a typical number and
operations institute, teachers were paid up
to $1,500 to attend summer sessions ranging
from 1 to 3 weeks. Academic mathemati-
cians and mathematics educators were the
instructors; the content was mathematics—
number and operations. Although MPDI
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sites were selected on the basis of their will-
ingness to work with low-performing/
high-poverty districts and schools, teachers
were not recruited on the basis of their
mathematical knowledge or other charac-
teristics (Madfes, Montell, & Rosen, 2002).
As a condition of funding, each institute
was required to measure growth in teacher
content knowledge. By supplying these
measures, the Study of Instructional Im-
provement and officials at California’s
MPDIs formed a mutually beneficial part-
nership, allowing both the pilot testing of
items and, potentially, an evaluation of the
institutes’ effectiveness. Items and forms,
however, were not written or constructed to
align with any particular MPDI, because
content varied across the 21 institutes in-
cluded in this analysis, and because we
wanted to design measures that could be
used beyond the MPDI setting.

By combining the summer pre/postas-
sessments given to teachers, we obtained
enough responses to each of three pilot
forms—640 cases for form A, 535 for form
B, and 377 cases for form C—to conduct sta-
tistical analyses. Each form was constructed
such that roughly seven stems and 11-15
items represented each cell in Figure 1.
“Testlet” items, or items linked by a com-
mon stem or scenario like item 2 in the Ap-
pendix, were combined into one item for
the factor analysis. Within each cell, three
“linking items” were constant across all
three forms; these items allowed form
equating in the evaluation portion of this
project and also allowed us to test and con-
firm hypotheses about particular items
across the three forms. The remaining items
within a cell differed between forms but still
followed the general themes and topics for
items outlined above. Thus, factor analyses
on each of the three forms could return con-
sistent results broadly (e.g., finding the
same number of factors, interpreting factors
in the same way) and for a small number of
linking items. To perform factor analyses,
we used a program written to accommodate
testlets (ORDFAC; Schilling, 2002b). To
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learn more about other item characteristics,
we used BILOG (Mislevy & Bock, 1997), a
program that enables item response theory
analyses (Hambleton, Swaminathan, &
Rogers, 1991).

Results and Discussion

In this analysis, we answered two ques-
tions: how teachers’” mathematical knowl-
edge for teaching is organized, and whether
we can, with these items, reliably measure
teachers” mathematical knowledge for
teaching. The results we present here draw
on the descriptions of data analysis pre-
sented in Schilling (2002a); readers who
wish a more thorough and technical version
of the factor analysis should refer to this
manuscript.

Organizing Content Knowledge for
Teaching

As we described above, the items used
in the MPDIs can be organized in several
ways. By putting all items on each form into
ORDFAC, we could determine which items
related to the same underlying constructs,
how many such constructs existed, and
with what certainty we could identify this
structure.

This task was complicated by the limi-
tations of the analytic method of item factor
analysis, which identifies patterns of asso-
ciation between items for a particular sam-
ple answering a single survey instrument.
A pattern of association is a necessary but
not sufficient condition for identification of
a unidimensional construct. Items measur-
ing conceptually different constructs can
also show a pattern of association in item
factor analysis because of a strong correla-
tion between the underlying constructs in
that sample. Another sample, in which the
same constructs do not exhibit as strong a
correlation, will often show a different pat-
tern of association, differentiating the two
conceptually distinct constructs. As we de-
scribe below, this phenomenon was exhib-
ited in two of our forms, where the patterns,
functions, and algebra content items loaded
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on the same factor as the knowledge of stu-
dents and content items in number concepts
and operations. A related question was, as-
suming a number of conceptually distinct
but related constructs for a set of items, the
extent to which a single “general” factor
could account for the covariation between
items compared to the amount of covaria-
tion accounted for by specific factors. Ad-
dressing this issue provided insight into the
meaning that might be attached to the use
of a simple total score for our instruments.
To address these concerns, we examined the
data using three types of analyses: (2) ex-
ploratory factor analyses of the three forms;
(b) factor analyses with patterns, functions,
and algebra items removed, to seek addi-
tional clarity of results; (c) bi-factor analy-
ses, to further assess the issue of multidi-
mensionality and to resolve questions
regarding knowledge of students and con-
tent items.

Exploratory factor analysis of all items
on form A suggested that there were three
underlying dimensions: (4) knowledge of
content in number concepts and operations;
(b) knowledge of content in patterns, func-
tions, and algebra; and (c) knowledge of
students and content in number concepts
and operations. This is illustrated in Table
1, which presents Promax rotated factor
loadings for all items. Note that all of the
knowledge of number concepts and opera-
tions items, with one exception, loaded
strongly on the first factor, and all the
knowledge of patterns, functions, and al-
gebra items loaded on the third factor. The
situation for the knowledge of students and
content items is more complicated. Most of
these items (9 out of 14) loaded primarily
on the second factor, but a significant mi-
nority loaded primarily on the first factor.
This suggested that either knowledge of
content or knowledge of students and con-
tent might alternatively be critical for an-
swering these types of items correctly. How-
ever, inspection of each item failed to reveal
any noticeable difference between the items
loading on the first and second factors.
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We also ran factor analyses on all items
for forms B and C. The results of these anal-
yses were consistent with form A in that the
knowledge of number concepts and opera-
tions items loaded almost exclusively on the
first factor and the knowledge of patterns,
functions, and algebra items loaded exclu-
sively on the third factor. However, the re-
sults for knowledge of students and content
items differed across the three forms. In
forms B and C these items loaded most of-
ten on the first (content) and third (algebra)
factors; the second factor had only a few
items with strong loadings on both forms.

Conceptually, there was little reason to
believe that the student thinking and pat-
terns, functions, and algebra items should
be combined to form a scale. Instead, it was
likely that these two constructs were corre-
lated in the form B and C samples, as de-
scribed above. This, combined with the re-
sults of the analysis of form A, suggested
that the presence of the patterns, functions,
and algebra items might be obscuring rela-
tions among the student thinking items.
Therefore, we omitted these items from sub-
sequent analyses and focused on whether
knowledge of content and knowledge of
students and content were distinguishable
factors.

Results suggested that we could make
such a differentiation. To start, we fit ex-
ploratory factor models of increasing com-
plexity (number of factors) to these items.
The results of these successive fits for each
form are presented in Table 2. Schilling and
Bock (in press) recommended that a model
of increasing complexity only be accepted if
the chi-square statistic for a model is two
times the difference in the degrees of free-
dom between the two models. This heuris-
tic is also employed in the Akaike Infor-
mation Criterion (AIC) (Agresti, 1990),
where a low value indicates better fit. By
both criteria, a two-factor model provided
the best fit for form A, whereas three-factor
models provided the best fit for forms B and
C. Table 3 presents the loadings for the two-
factor models for all three forms, and Table
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TasLE 1. Promax Rotated Factor Loadings, Form A

Item Factor 1 Factor 2 Factor 3
Knowledge of content:
Number concepts:
1 512 138 .063
2 473 113 ~.059
3 260 -.132 165
4 219 062 -.180
5 A44 158 -.133
6 228 097 .086
7 139 ~-.039 .295
Operations:
1 .732 068 —.203
2 .246 084 136
3 637 —.210 .101
4 643 042 036
5 .704 -.292 —.023
6 511 —-.143 —.052
Patterns, functions, and algebra:
1 —.290 —-.111 773
2 259 -.038 403
3 015 —-.016 675
4 156 175 314
5 337 —.047 419
6 039 —-.113 .639
Knowledge of students and content:
Number concepts:
1 061 275 121
2 263 327 .158
3 311 149 —.021
4 .002 .365 010
5 ~.109 .248 212
6 .180 .386 047
7 .352 —.041 019
Operations:
1 ~.055 946 —.098
2 .466 181 ~.058
3 018 .249 130
4 493 -.022 017
5 -.125 .699 ~.124
6 —-.012 417 -~.022
7 ~-.015 149 151

Note.—Boldface indicates highest loadings for each item.

4 presents the loadings of the three-factor
models for form C. Examination of the fac-
tor Joadings for the two- and three-factor
models for form B revealed the two models
to be essentially the same, with the excep-
tion that three of the knowledge of students
and content in operations items comprised
a third factor for the latter model. The two-
and three-factor models for form C differed
in that none of the knowledge of students
and content in number concepts items had
substantial loadings on the second factor for
the two-factor model, but four of the eight

items loaded on a third factor for the three-
factor model.

Taken together, these exploratory anal-
yses suggested at least three dimensions
across all the items reflecting the following
constructs: (2) knowledge of content (KC)
in elementary number and operations;
(b) knowledge of students and content
(KSC) in elementary number and opera-
tions; and (c) knowledge of content (KC) in
patterns, functions, and algebra. Although
results differed across forms in the area of
knowledge of students and content, they
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TaBLE 2. Exploratory Factor Analyses, Number Concepts/Operations

Akaike’s Information

x daf Criterion

Form A:

1 factor 25345

2 factor 96.96 26 25300

3 factor 44.82 25 25305

4 factor 43.34 24 25310
Form B:

1 factor 22506

2 factor 72.76 28 22489

3 factor 66.20 27 22477

4 factor 47.76 26 22481
Form C:

1 factor 16219

2 factor 111.98 29 16165

3 factor 69.46 28 16152

4 factor 37.56 27 16168

corresponded to the categorization system
shown in Figure 1, assuming the combin-
ing of number and operations.

After these analyses suggested this gen-
eral shape to our data, we ran a five-factor
bi-factor model. This model specified the
number of factors (four) and allows each
item to load in two places: on a general fac-
tor that explains teachers’ responses to all
items, and on a specific factor representing
its place in the categorization scheme de-
scribed in Figure 1. Because exploratory fac-
tor analysis showed no difference between
number and operations content items, how-
ever, we assigned both sets of items to only
one factor. We tested this bi-factor model for
three reasons. First, results would assist us
in determining to what extent a general fac-
tor versus specific factors explained patterns
in teachers’ responses to these items. Second,
results would allow us to better assess our
hypothesis that there is a difference between
common and specialized knowledge of con-
tent (SKC). Here we might expect items that
tap common knowledge to load on the gen-
eral factor and items that tap specialized
knowledge to load on a specific factor. Fi-
nally, results would allow us to better un-
derstand the multidimensionality within the
knowledge of students and content items.

Results from this bi-factor analysis were
informative. First, the general factor ex-

plained between 72% and 77% of the overall
variation in teachers’ responses to items on
each of the three forms (see Table 5). This
factor explained variation in a substantial
number of content knowledge items, sug-
gesting that the factor can be interpreted as
common knowledge of content (CKC) and
suggesting an influence of general grasp of
mathematics on teachers’ responses to items.
However, multidimensionality was also ap-
parent here, because the factors describing
knowledge of students and content (KSC)
and knowledge of content (KC) in patterns,
functions, and algebra accounted for be-
tween 21% and 45% of the communality in
items written to represent these areas. Fur-
ther, the SKC factor explained 12%-23% of
the communality of items written to repre-
sent knowledge of content in number and
operations.

Similar to results from the exploratory
analysis, some knowledge of students and
content items continued to load on the CKC
factor, others loaded on their own factor,
and many loaded on both. There were no
firm patterns among items in how they
loaded; both the CKC and KSC factors in-
cluded items that referenced student errors,
common strategies, similar subject-matter
content, and a range of item difficulties.
Whatever the cause of these loading pat-
terns, it made sense to think that mathe-
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TasLE 3. Number Concepts and Operations Promax Rotated Factor Loadings, Two-Factor Models

Form A Form B Form C
Item Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2
Content knowledge:
Number concepts:
1 546 159 253 491 .641 -.067
2 456 059 192 342 473 026
3 373 -.126 174 238 222 027
4 126 016 408 -.012 193 267
5 .357 130 .353 191 .616 -.118
6 273 110 591 269 .551 —.181
7 328 004 327 457 .697 -.090
8 —.126 517
9 .594 .068
10 454 247
Operations:
1 606 031 .844 —.084 691 —.005
2 .338 .090 .395 098 A11 012
3 761 —.250 .552 —.140 A15 043
4 .681 027 291 .402 234 326
5 .699 —.304 321 230 .386 101
6 503 —.176 .659 004
7 492 -.071
8 .295 366
Knowledge of students and content:
Number concepts:
1 le4 264 052 217 128 .188
2 .360 342 195 474 .647 -.107
3 .285 147 —.040 426 .580 —.086
4 .018 .356 311 271 —.007 060
5 029 270 .187 423 579 - 081
6 .208 .396 .578 —.008
7 .359 —.042 213 152
8 201 079
Operations:
1 -.176 1.006 -.103 431 —.264 919
2 427 168 077 473 .302 .388
3 097 265 — 411 719 -.190 659
4 .500 -.012 .310 —.041 210 372
5 -.195 669 124 150 —.045 .700
6 —.047 441 062 464 174 552
7 057 182 137 .316 035 .518
8 071 224
9 —.036 .551

Note.—Boldface indicates highest loadings for each item.

matical content knowledge and knowledge
of students and mathematics should be in-
terrelated, for it is difficult to imagine teach-
ers having strong knowledge of students’
learning without some basic knowledge of
the mathematics they study.
Multidimensionality was also apparent
in items written to represent knowledge of
content in elementary number and opera-
tions. To a large extent, items representing
common knowledge of content (CKC)

tended to appear on the general factor, sug-
gesting again that this factor represented
overall mathematical ability. However, vari-
ation in teachers’ responses to items written
to represent specialized knowledge of con-
tent (SKC) was much more likely to be ex-
plained, at least in part, by the “specific”
content knowledge factor. Finding this fac-
tor supported the conjecture that some con-
tent knowledge used in teaching is specific
to key tasks in which teachers must engage.
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TABLE 4. Promax Rotated Factor Loadings, Number Concepts/Operations,
Three-Factor Solution, Form C

Item Factor 1 Factor 2 Factor 3

Content knowledge:
Number concepts:

1 625 —.066 018
2 .355 -.062 .284
3 .240 041 —.038
4 242 316 -.097
5 .558 -.137 102
6 614 -.09% ~.201
7 .783 021 -.250

Operations:
1 725 .046 -.103
2 .355 -.010 112
3 .393 .041 .044
4 —.131 .046 .894
5 344 .064 112
6 .702 067 —.124
7 571 .009 —-.211
8 299 352 .045

Knowledge of students and content:

Number concepts:
1 —.074 -.008 .543
2 624 -.098 016
3 462 -.200 304
4 —-.276 -.177 .661
5 526 —-.097 091
6 499 -.072 197
7 .098 046 2302
8 167 .044 096

Operations:
1 —.095 .899 —-.129
2 271 320 157
3 -.092 .655 -.070
4 243 .363 —.004
5 -.107 .564 .303
6 131 462 210
7 .003 439 183

Norte.—Boldface indicates highest loadings for each item.

TaBLE 5. Percentage of Communality Explained by General and Specific Factors

Knowledge of Students
Knowledge of Content and Content
Number and Patterns, Functions, Number and
Operations and Algebra Operations Total
Form A:
General 88.1 54.7 65.6 72.5
Specific 11.9 45.3 34.4 27.5
Form B: .
General 83.3 72.8 77.3 79.1
Specific 16.6 27.2 22.6 209
Form C:
General 76.7 78.9 75.5 76.6

Specific 23.3 21.1 24.5 234
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Inspecting the items that comprised this fac-
tor further supported this hypothesis and
suggested some characteristics of this
knowledge. These items included those that
engage teachers in (7) analyzing alternative
algorithms or procedures, (b)) showing or
representing numbers (e.g., 10.05) or opera-
tions (e.g., 1/2 X 2/3) using manipulatives,
and (¢) providing explanations for common
mathematical rules (e.g., why any number
can be divided by 4 if the last two digits are
divisible by 4). These corresponded closely
to our initial ideas about the constituent
parts of specialized knowledge of content,
with one exception: items that asked teach-
ers to match fractions number sentences to
stories (e.g., represent 1% + 2 with a story)
appeared on the general factor. Neverthe-
less, finding this specific factor supported
the idea of specialized knowledge of con-
tent.

Evidence that supports the existence of
specialized content knowledge for teaching
is important. From a measurement stand-
point, these results suggested that common
and specialized mathematical knowledge
are related yet are not completely equivalent;
the possibility exists that individuals might
have well-developed common knowledge
yet lack the specific kinds of knowledge
needed to teach. Results also indicated that
individuals might develop the specialized
knowledge for teaching mathematics—per-
haps from teacher preparation, professional
development, or working with students or
curriculum materials—without having oth-
erwise expert knowledge of mathematical
content. This finding has implications for
theory, policy, teacher preparation, and mea-
surement. We discuss some of these below.

Apart from the major structure of the
data, several things about these findings
stand out. First, these items were not orga-
nized around generic tasks of teaching (e.g.,
evaluating curriculum materials, interpret-
ing students’ work). Instead, these results
suggested that the organization of teachers’
knowledge is at least somewhat content
specific. Yet these constructs were not
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highly particular, either: instead of finding
specific factors that represented either con-
tent (e.g., fractions, whole-number compu-
tation) or specific tasks of teaching mathe-
matics (e.g., representing numbers and
operations, analyzing student errors), we
found broader groupings of items. Finally,
the items that appeared on all three forms
tended to perform consistently across those
forms in our factor analyses, with minor ex-
ceptions (see Schilling, 2002a).

Overall, results from these factor analy-
ses revealed that teachers’ content knowl-
edge for teaching is at least somewhat do-
main specific, and that scholars who have
hypothesized about the categories around
which teacher knowledge might organize
are at least partially correct. Subject-matter
content does play a role; so do the different
ways mathematical knowledge is used in
classrooms. Including additional content
areas (geometry, data and statistics) and a
fuller array of knowledge of students and
content items (e.g., in algebra, geometry)
would allow further testing of this finding.
In the meantime, we consider these find-
ings” implication for constructing measures
of teacher knowledge.

Measuring Content Knowledge for

Teaching

Given the results from the factor analy-
sis, could we construct reliable measures
that accurately represent teachers” ability in
these areas? This was a major goal of our
work, for these measures are needed to
gauge the effectiveness of professional de-
velopment and other teacher learning op-
portunities and to estimate the contribution
of teacher knowledge to student achieve-
ment.

We used BILOG to fit initial item re-
sponse theory (IRT) models to the data
(Hambleton et al., 1991). We present results
for scales for (a) each cell in Figure 1, (b) for
combined number concepts/operations
knowledge of content and knowledge of
students and content scales, and (¢) for an
overall measure of mathematical knowl-
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edge for teaching. Table 6 provides descrip-
tive statistics for these scales on each of the
three forms—coefficient alphas for a clas-
sical test theory measure of reliability, IRT
reliabilities computed using BILOG, and
points of maximum test information. The
reliabilities for patterns, functions, and al-
gebra scales, as well as for scales that com-
bined number and operations items within
each domain, were good to excellent, rang-
ing from 0.71 to 0.84. However, the points
of maximum information revealed how
each scale could be improved. The. lowest
reliability of 0.71 occurred for the knowl-
edge of students and content scale on form
A where the maximum information was 1.9
standard deviations below the population
mean. In contrast, the number concepts/
operations content knowledge scale for
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form A had point of maximum information
at 0.36 standard deviations below the popu-
lation mean. This meant that this scale was
better targeted to the skills of the popula-
tion; hence the scale had a higher reliabil-
ity—0.81.

There are several things to note about
these efforts to build measures that reflect
individuals’ content knowledge for teach-
ing mathematics. First, measures represent-
ing teachers’ knowledge of content had
higher reliabilities than those composed of
items meant to measure familiarity with
students and content. Second, for most
measures, the test provided the most infor-
mation (test information curve maximum)
at abilities below the average teacher, that
is, items were, on average, too easy, yielding
the best measurement (lowest standard er-

TaBLE 6. Reliabilities and Points of Maximum Information

Form/Scale Items (N) Alpha IRT Reliability Max Info
Form A:
Knowledge of content:
Number concepts 13 .536 .654 -.51
Operations 13 617 709 -.21
Patterns, functions, algebra 12 740 771 -~.79
Combined number and operations 26 719 810 —.36
Knowledge of students and content:
Number concepts 10 494 576 —.67
Operations 10 450 534 -1.97
Combined number and operations 20 622 709 ~1.90
Total 58 .845 907 —-.76
Form B:
Knowledge of content:
Number concepts 13 .670 741 -1.45
Operations 1 .568 .655 —.76
Patterns, functions, algebra 12 793 .805 —-1.21
Combined number and operations 24 766 831 -1.27
Knowledge of students and content:
Number concepts 8 507 .578 -.50
Operations 11 544 610 ~1.29
Combined number and operations 19 657 727 -116
Total 55 878 916 -1.33
v Form C:
Knowledge of content:
Number concepts 11 653 742 - .95
Operations 12 675 758 21
Patterns, functions, algebra 10 824 801 - .81
Combined number and operations 23 784 .839 -.17
Knowledge of students and content:
Number concepts 1 552 655 —.43
Operations 10 649 .689 —151
Combined number and operations 21 698 781 -11
Total 54 888 931 -9
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rors) for teachers who scored between .5
and 2.0 standard deviations below average.
This trend was most pronounced in the
knowledge of students and content mea-
sures. Third, there remain some significant
problems with multidimensionality with
these items, particularly in the areas of
knowledge of students and content and, for
those who choose to use this construct, the
specialized knowledge of content. For more
on potential solutions to this problem, see
Schilling (2002a).

Finally, any appraisal of the utility of a
measure must include an examination of
the relation between individuals’ perfor-
mance on the instrument and those individ-
uals’ real skill or ability, that is, of validity.
For these measures, a best-case investiga-
tion of validity would include comparing
teachers” measure score with an assessment
of their use of mathematics content during
classroom teaching. This work is currently
under way. Less convincing, although more
often done in the field of test construction,
are cognitive tracing interviews, in which
individuals talk through their thinking and
answers about items. If individuals’ think-
ing does not reflect their answers, problems
of validity are likely. Although an analysis
conducted with items similar to these sug-
gested that, for knowledge of content items,
teachers’ answers represented their under-
lying reasoning, results were not so san-
guine for student thinking items, where
more problems pertained (see Hill, 2002).
This suggests that the more varied factor
analysis results and lower reliabilities for
this second set of items may be related to
problems with measurement in this do-
main.

Conclusion

By developing measures of teacher knowl-
edge for teaching mathematics, we hope to
contribute to a number of ongoing efforts in
educational research to answer policy-
relevant questions: identifying the effect of
teacher knowledge on student achievement,
explaining how teacher knowledge devel-
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ops (via experience, professional training,
professional development), and answering
other key policy questions (e.g., the effects
of certification on teacher knowledge).
However, we believe developing such mea-
sures can also contribute to a renewal of in-
terest in the theoretical aspects of profes-
sional knowledge for teaching by allowing
insight into how knowledge is held by
teachers, how that knowledge relates to
common subject-matter knowledge, and
perhaps even (through open-ended inter-
views) how teachers, nonteachers, and
subject-matter experts deploy knowledge.
We see the analyses reported in this ar-
ticle as a first step in the measures-
development process. The data set was less
than ideal, because teachers were sampled
nonrandomly and MPDI pre- and posttests
were combined for this analysis. Because
different subjects answered different forms
on the pretest and posttest, combining data
did not present significant problems for our
use of IRT, other than perhaps producing a
nonnormal distribution of ability in the
sample for a particular form. Fortunately,
IRT models are generally robust to nonnor-
mal distributions of ability (Bock & Aitken,
1981). We also measured typical, rather than
expert, teachers, and this may further con-
strain our results: if typical teachers do not
have or have less specialized knowledge for
teaching mathematics, we bias our results
toward a null finding for this hypothesis.
And these findings should also be repli-
cated, both through studies similar to the
one reported here and also through the use
of multiple methods, including interviews
and observations of classroom instruction.
However, our analyses suggest that
some tentative results can be reported now.
First, repeated analyses across three forms
show evidence of multidimensionality in
these measures, suggesting that teachers’
knowledge of mathematics for teaching is
at least partly domain specific rather than
simply related to a general factor such as
overall intelligence, mathematical ability, or
teaching ability. Although results from the
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bi-factor analysis suggest that such a gen-
eral factor does operate, additional com-
munality is explained by specific dimen-
sions; this supports Shulman’s and others’
claims that knowledge for teaching consists
of both general knowledge of content and
knowledge in more specific domains.

The domains identified in the factor
analyses are themselves interesting. Our
data indicate that in addition to a general
factor, specific factors represent knowledge
of content in number and operations,
knowledge of students and content in num-
ber and operations, and the relatively
newer area (for elementary school) of
knowledge of content in patterns, functions,
and algebra. The data also suggest a spe-
cialized knowledge of content measure
made up of several types of items: repre-
senting numbers and operations, analyzing
unusual procedures or algorithms, and pro-
viding explanations for rules. Writing items
that represent more content areas, more
specialized tasks (e.g., using mathematical
definitions in teaching), and possibly more
domains (e.g., knowledge of teaching and
content) will allow us to assess the extent to
which content and task continue to play a
role in defining domains of teacher think-
ing.

Our findings imply lessons for theory,
* policy, and measurement. They provide evi-
dence for the conjecture that content knowl-
edge for teaching mathematics consists of
more than the knowledge of mathematics
held by any well-educated adult. Although
such knowledge of mathematics appears to
be an important component of the knowl-
edge needed for teaching, there may be
more mathematical depth to teaching ele-
mentary school, in other words, than sim-
ply the content of a third-, fifth-, or even
eighth-grade textbook. We cannot say what
specific areas teachers must know to help
students learn—such a statement must wait
for the results of analyses that compare the
effects of different kinds of teacher knowl-
edge on students’ growth in classrooms. But
our results hint that rather than focusing on
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how much mathematics an individual
knows, as has historically been the case (see
Shulman, 1986), researchers must also ask
how an individual holds and uses that
knowledge—whether a teacher can use
mathematical knowledge to generate rep-
resentations, interpret student work, or an-
alyze student mistakes. Our findings also
suggest the utility of continuing to identify
the content, so to speak, of our specialized
knowledge of content category and thus ex-
tending our notions of the knowledge
needed to teach.

If our results hold, they also bear on cur-
rent policy debates regarding the recruit-
ment and preparation of teachers. Strong
knowledge of basic mathematical content
does matter; however, policy makers must
take seriously the idea that additional ca-
pabilities may be layered atop that foun-
dation. Until we can replicate these results,
we cannot definitively say that teachers
should learn this information in preservice
or in-service preparation. Yet finding evi-
dence for these multiple dimensions lends
support for a curriculum that goes into
depth and that is specific to the work of
teaching. Teachers may need to know why
mathematical statements are true, how to
represent mathematical ideas in multiple
ways, what is involved in an appropriate
definition of a term or a concept, and meth-
ods for appraising and evaluating mathe-
matical methods, representations, or solu-
tions. By helping teachers develop
knowledge of mathematics that goes be-
yond the understanding needed for every-
day nonprofessional functioning, faculty
and professional developers may assist
teachers in preparing for the tasks they will
encounter on the job.

From a policy perspective, our research
suggests supporting professional develop-
ment and teacher preparation programs
that enable this kind of learning. However,
it also carries a lesson for those who con-
struct teacher licensure exams, at least at the
elementary level; reviews of several cur-
rently used exams indicate that the majority
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of problems simply ask teachers to com-
pute, rather than to use knowledge in more
classroom-authentic ways. If researchers
find that the more specific kinds of expertise
identified here affect student achieve-
ment—or even if researchers simply decide,
based on normative arguments, that teach-
ers should possess this knowledge—Ilicen-
sure exams should reflect this emphasis.

From a measurement perspective, these
results support constructing separate scales
to represent knowledge for teaching math-
ematics. This is an important point for re-
searchers, who aim to devise measures that
are sensitive to differences in individuals’
unique combinations of knowledge and
skills in order to explore the relationship be-
tween such measures and others like stu-
dent achievement. The presence of multi-
dimensionality also changes the way
researchers might model teacher develop-
ment and its contribution to student
achievement. Rather than using one catchall
variable, researchers can contrast the effects
of teacher growth in various domains on
student achievement and predict the effects
of growth in different domains resulting
from various “treatments,” such as the ef-
fect of the first years of teaching on knowl-
edge of student strategies, mistakes, and
methods.

Appendix

Examples of Items Measuring
Content Knowledge for Teaching
Mathematics

1. Mr. Allen found himself a bit confused one
morning as he prepared to teach. Realizing that
ten to the second power equals one hundred
(10? = 100), he puzzled about what power of 10
equals 1. He asked Ms. Berry, next door. What
should she tell him? (Mark (X) ONE answer.)

D0
b1

¢) Ten cannot be raised to any power such that
ten to that power equals 1.
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d) -1
e) 'm not sure.
2. Imagine that you are working with your
class on multiplying large numbers. Among

your students’ papers, you notice that some have
displayed their work in the following ways:

Student A Student B Student C
35 35 35
X 25 X 25 X 25
125 175 25
+75 +700 150
100
875 875 +600
875

Which of these students would you judge to be
using a method that could be used to multiply
any two whole numbers?

Method Method
would would NOT

work for work for 'm

all whole all whole not

numbers numbers sure
a) Method A 1 2 3
b) Method B 1 2 3
¢) Method C 1 2 3

3. Mr. Fitzgerald has been helping his stu-
dents learn how to compare decimals. He is try-
ing to devise an assignment that shows him
whether his students know how to correctly put
a list of decimals in order of size. Which of the
following sets of numbers will best suit that pur-
pose?

a) b 7 .01 114
b) .60 253 3.14 45
c) 6 4.25 .565 25

d) Any of these would work well for this pur-
pose. They all require the students to read and
interpret decimals.

4. Mrs. Jackson is getting ready for the state
assessment, and is planning mini-lessons for stu-
dents focused on particular difficulties that they
are having with adding columns of numbers. To
target her instruction more effectively, she wants
to work with groups of students who are making
the same kind of error, so she looks at a recent
quiz to see what they tend to do. She sees the
following three student mistakes:
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1 1 1
D 38 1) 45 1) 32
49 37 14
+65 +29 +19
142 101 64

Which have the same kind of error? Mark ONE
answer.)

a)land II

b 1and 111

¢) IT and IIT

d) L1, and ITI

NotE.-—Items copyright 2004, Study of In-
structional Improvement. Not for reproduction
or use without consent of authors.
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